8  Data Sets

The authors use the data sets provided in package spatstat.data (v3.1.9) to demonstrate the use of functions.

Chapter 8 lists several, though not all, data objects from package spatstat.data, along with selected inspections of these objects. The function calls shown in Chapter 8 are exclusively those provided by the spatstat.* family of packages.

8.1 anemones

The ppp.object (Chapter 23) anemones from package spatstat.data (v3.1.9) has

  • 231 points;
  • rectangle window;
  • one integer-mark;
  • 'vector'-markformat.
Data: anemones
spatstat.data::anemones |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 231 points
# marks are numeric, of storage type  'integer'
# window: rectangle = [0, 280] x [0, 180] units
spatstat.data::anemones |>
  spatstat.geom::markformat.ppp()
# [1] "vector"
spatstat.data::anemones |>
  spatstat.geom::marks.ppp() |>
  summary.default()
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#   2.000   3.000   4.000   4.294   5.000   8.000
spatstat.data::anemones |>
  spatstat.geom::marks.ppp() |>
  typeof()
# [1] "integer"

8.2 ants

The ppp.object (Chapter 23) ants from package spatstat.data (v3.1.9) has

  • 97 points;
  • polygonal window;
  • one multitype-mark with two levels, 'Cataglyphis' and 'Messor';
  • 'vector'-markformat.
Data: ants
spatstat.data::ants |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 97 points
# Multitype, with levels = Cataglyphis, Messor 
# window: polygonal boundary
# enclosing rectangle: [-25, 803] x [-49, 717] units (one unit = 0.5 feet)
spatstat.data::ants |>
  spatstat.geom::markformat.ppp()
# [1] "vector"
spatstat.data::ants |>
  spatstat.geom::marks.ppp() |>
  table()
# 
# Cataglyphis      Messor 
#          29          68

8.3 austates

The tessellation (Chapter 26) object austates from package spatstat.data (v3.1.9) has

  • 7 tiles;
  • polygonal window;
  • no marks.
Data: austates
spatstat.data::austates |>
  spatstat.geom::print.tess()
# Tessellation
# Tiles are irregular polygons
# 7 tiles (irregular windows)
# window: polygonal boundary
# enclosing rectangle: [113.19392, 153.6692] x [-43.59316, -10.93156] degrees
spatstat.data::austates |>
  spatstat.geom::marks.tess() |>
  is.null()
# [1] TRUE

8.4 betacells

The ppp.object (Chapter 23) betacells from package spatstat.data (v3.1.9) has

  • 135 points;
  • rectangle window;
  • one numeric-mark area;
  • one multitype-mark type with two levels, 'off' and 'on';
  • 'dataframe'-markformat.
Data: betacells
spatstat.data::betacells |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 135 points
# Mark variables: type, area 
# window: rectangle = [28.08, 778.08] x [16.2, 1007.02] microns
spatstat.data::betacells |>
  spatstat.geom::markformat.ppp()
# [1] "dataframe"
spatstat.data::betacells |>
  spatstat.geom::marks.ppp() |>
  head(n = 3L)
#   type  area
# 1   on 275.9
# 2  off 241.2
# 3   on 256.0

8.5 bronzefilter

The ppp.object (Chapter 23) bronzefilter from package spatstat.data (v3.1.9) has

  • 678 points;
  • rectangle window;
  • one numeric-mark
  • 'vector'-markformat.
Data: bronzefilter
spatstat.data::bronzefilter |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 678 points
# marks are numeric, of storage type  'double'
# window: rectangle = [0, 18] x [0, 7] mm
spatstat.data::bronzefilter |> 
  spatstat.geom::markformat.ppp()
# [1] "vector"
spatstat.data::bronzefilter |> 
  spatstat.geom::marks.ppp() |>
  summary.default()
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#   0.013   0.120   0.160   0.167   0.200   0.467

8.6 btb.extra

Data set btb.extra from package spatstat.data (v3.1.9) is a length-2 ppplist (Chapter 24).

Data: btb.extra
spatstat.data::btb.extra
# List of point patterns
# 
# full:
# Marked planar point pattern: 919 points
# Mark variables: year, spoligotype 
# window: polygonal boundary
# enclosing rectangle: [133.5147, 246.0193] x [10.88514, 118.7298] km
# 
# standard:
# Marked planar point pattern: 873 points
# Mark variables: year, spoligotype 
# window: polygonal boundary
# enclosing rectangle: [133.5147, 246.0193] x [10.88514, 118.7298] km
spatstat.data::btb.extra |> 
  class()
# [1] "ppplist" "solist"  "anylist" "listof"  "list"
spatstat.data::btb.extra |> 
  sapply(FUN = class)
#     full standard 
#    "ppp"    "ppp"
if (FALSE) {
  spatstat.data::btb.extra |> 
    plot()
    
  
}

8.7 cetaceans

The hyperframe (Chapter 17) cetaceans from package spatstat.data (v3.1.9) has

  • four point-pattern (ppp (Chapter 23)) hypercolumns whales, dolphins, fish and plankton.
Data: cetaceans
spatstat.data::cetaceans |>
  spatstat.geom::print.hyperframe()
# Hyperframe:
#   whales dolphins  fish plankton
# 1  (ppp)    (ppp) (ppp)    (ppp)
# 2  (ppp)    (ppp) (ppp)    (ppp)
# 3  (ppp)    (ppp) (ppp)    (ppp)
# 4  (ppp)    (ppp) (ppp)    (ppp)
# 5  (ppp)    (ppp) (ppp)    (ppp)
# 6  (ppp)    (ppp) (ppp)    (ppp)
# 7  (ppp)    (ppp) (ppp)    (ppp)
# 8  (ppp)    (ppp) (ppp)    (ppp)
# 9  (ppp)    (ppp) (ppp)    (ppp)

8.8 demohyper

The hyperframe (Chapter 17) demohyper from package spatstat.data (v3.1.9) has

  • a regular column Group,
  • a point-pattern (ppp, Chapter 23) hypercolumn Points, and
  • a pixel image (im, Chapter 19) hypercolumn Image.

To view demohyper in a desired format, readers may use either one of the following approaches,

  • call library(spatstat.geom), then call the S3 generic function base::print() by simply typing the object’s name at the console prompt and pressing Enter;
  • call library(groupedHyperframe), then call the S3 generic function base::print() by simply typing the object’s name at the console prompt and pressing Enter. This approach works as intended, since package groupedHyperframe (v0.3.0.20251020) Imports the package spatstat.geom (v3.6.0.3);
  • call the S3 method dispatch spatstat.geom::print.hyperframe() directly, as in Listing 8.1.
Listing 8.1: Data: demohyper
Code
spatstat.data::demohyper |>
  spatstat.geom::print.hyperframe()
# Hyperframe:
#   Points Image Group
# 1  (ppp)  (im)     a
# 2  (ppp)  (im)     b
# 3  (ppp)  (im)     a

To find the (hyper)column names of demohyper, readers may use either one of the following approaches,

  • call library(spatstat.geom), then call the .Primitive S3 generic function base::names();
  • call library(groupedHyperframe), then call the .Primitive S3 generic function base::names(). This approach works as intended, since package groupedHyperframe (v0.3.0.20251020) Imports the package spatstat.geom (v3.6.0.3);
  • call the S3 method dispatch spatstat.geom::names.hyperframe() directly, as in Listing 8.2.
Listing 8.2: Review: (hyper)column names of demohyper
Code
spatstat.data::demohyper |>
  spatstat.geom::names.hyperframe()
# [1] "Points" "Image"  "Group"

To observe the ppp-hypercolumn demohyper$Points and the im-hypercolumn demohyper$Image, readers may use either one of the following approaches,

  • call library(spatstat.geom), then call the .Primitive S3 generic function base::`$`;
  • call library(groupedHyperframe), then call the .Primitive S3 generic function base::`$`. This approach works as intended, since package groupedHyperframe (v0.3.0.20251020) Imports the package spatstat.geom (v3.6.0.3), as in Listing 8.3;
  • call the S3 method dispatch spatstat.geom::`$.hyperframe` directly, as in Listing 8.4.
Listing 8.3: Review: observe ppp-hypercolumn demohyper$Points
Code
spatstat.data::demohyper$Points |>
  class()
# [1] "ppplist" "solist"  "anylist" "listof"  "list"
Listing 8.4: Advanced: observe ppp-hypercolumn demohyper$Points, super nerdy way!
Code
spatstat.data::demohyper |>
  spatstat.geom::`$.hyperframe`(name = 'Points') # only if you know what you are doing!!
# List of point patterns
# 
# 1:
# Planar point pattern: 104 points
# window: binary image mask
# 128 x 128 pixel array (ny, nx)
# enclosing rectangle: [2.017, 3.93] x [0.645, 3.278] units
# 
# 2:
# Planar point pattern: 104 points
# window: binary image mask
# 128 x 128 pixel array (ny, nx)
# enclosing rectangle: [0.645, 3.278] x [2.017, 3.93] units
# 
# 3:
# Planar point pattern: 101 points
# window: binary image mask
# 128 x 129 pixel array (ny, nx)
# enclosing rectangle: [-3.278, -0.645] x [-3.93, -2.017] units
Review: observe the 1st ppp.object in ppp-hypercolumn demohyper$Points
spatstat.data::demohyper$Points[[1L]] |>
  spatstat.geom::print.ppp()
# Planar point pattern: 104 points
# window: binary image mask
# 128 x 128 pixel array (ny, nx)
# enclosing rectangle: [2.017, 3.93] x [0.645, 3.278] units
if (FALSE) {
  spatstat.data::demohyper$Points[[1L]] |>
    spatstat.geom::plot.ppp()
} # figure suppressed to reduce vignette size
Review: observe im-hypercolumn demohyper$Image
spatstat.data::demohyper$Image
# List of pixel images
# 
# 1:
# real-valued pixel image
# 53 x 39 pixel array (ny, nx)
# enclosing rectangle: [2.017, 3.93] x [0.645, 3.278] units
# 
# 2:
# real-valued pixel image
# 39 x 53 pixel array (ny, nx)
# enclosing rectangle: [0.645, 3.278] x [2.017, 3.93] units
# 
# 3:
# real-valued pixel image
# 39 x 53 pixel array (ny, nx)
# enclosing rectangle: [-3.278, -0.645] x [-3.93, -2.017] units
spatstat.data::demohyper$Image |>
  class()
# [1] "imlist"  "solist"  "anylist" "listof"  "list"
Review: observe the 1st im.object in im-hypercolumn demohyper$Image
spatstat.data::demohyper$Image[[1L]] |>
  spatstat.geom::print.im()
# real-valued pixel image
# 53 x 39 pixel array (ny, nx)
# enclosing rectangle: [2.017, 3.93] x [0.645, 3.278] units
if (FALSE) {
  spatstat.data::demohyper$Image[[1L]] |>
    spatstat.geom::plot.im()
} # figure suppressed to reduce vignette size

8.9 finpines

The ppp.object (Chapter 23) finpines from package spatstat.data (v3.1.9) has

  • 126 points;
  • rectangle window;
  • two numeric-marks, diameter and height;
  • 'dataframe'-markformat.
Data: finpines
spatstat.data::finpines |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 126 points
# Mark variables: diameter, height 
# window: rectangle = [-5, 5] x [-8, 2] metres
spatstat.data::finpines |>
  spatstat.geom::markformat.ppp()
# [1] "dataframe"
spatstat.data::finpines |>
  spatstat.geom::marks.ppp() |>
  head(n = 3L)
#   diameter height
# 1        1    1.7
# 2        1    1.7
# 3        1    1.6

8.10 flu

Data set flu from package spatstat.data (v3.1.9) is a hyperframe (Chapter 17).

Data: flu
spatstat.data::flu |>
  spatstat.geom::print.hyperframe()
# Hyperframe:
#                pattern virustype stain frameid
# wt M2-M1 13      (ppp)        wt M2-M1      13
# wt M2-M1 22      (ppp)        wt M2-M1      22
# wt M2-M1 27      (ppp)        wt M2-M1      27
# wt M2-M1 43      (ppp)        wt M2-M1      43
# wt M2-M1 49      (ppp)        wt M2-M1      49
# wt M2-M1 65      (ppp)        wt M2-M1      65
# wt M2-M1 71      (ppp)        wt M2-M1      71
# wt M2-M1 84      (ppp)        wt M2-M1      84
# wt M2-HA 3       (ppp)        wt M2-HA       3
# wt M2-HA 4       (ppp)        wt M2-HA       4
# wt M2-HA 5       (ppp)        wt M2-HA       5
# wt M2-HA 17      (ppp)        wt M2-HA      17
# wt M2-HA 54      (ppp)        wt M2-HA      54
# wt M2-HA 74      (ppp)        wt M2-HA      74
# wt M2-HA 78      (ppp)        wt M2-HA      78
# wt M2-HA 82      (ppp)        wt M2-HA      82
# wt M2-HA 85      (ppp)        wt M2-HA      85
# wt M2-HA 100     (ppp)        wt M2-HA     100
# wt M2-HA 110     (ppp)        wt M2-HA     110
# mut1 M2-M1 11    (ppp)      mut1 M2-M1      11
# mut1 M2-M1 13    (ppp)      mut1 M2-M1      13
# mut1 M2-M1 15    (ppp)      mut1 M2-M1      15
# mut1 M2-M1 17    (ppp)      mut1 M2-M1      17
# mut1 M2-M1 28    (ppp)      mut1 M2-M1      28
# mut1 M2-M1 29    (ppp)      mut1 M2-M1      29
# mut1 M2-M1 33    (ppp)      mut1 M2-M1      33
# mut1 M2-M1 38    (ppp)      mut1 M2-M1      38
# mut1 M2-M1 41    (ppp)      mut1 M2-M1      41
# mut1 M2-M1 44    (ppp)      mut1 M2-M1      44
# mut1 M2-M1 59    (ppp)      mut1 M2-M1      59
# mut1 M2-HA 8     (ppp)      mut1 M2-HA       8
# mut1 M2-HA 14    (ppp)      mut1 M2-HA      14
# mut1 M2-HA 23    (ppp)      mut1 M2-HA      23
# mut1 M2-HA 42    (ppp)      mut1 M2-HA      42
# mut1 M2-HA 51    (ppp)      mut1 M2-HA      51
# mut1 M2-HA 59    (ppp)      mut1 M2-HA      59
# mut1 M2-HA 73    (ppp)      mut1 M2-HA      73
# mut1 M2-HA 79    (ppp)      mut1 M2-HA      79
# mut1 M2-HA 86    (ppp)      mut1 M2-HA      86
# mut1 M2-HA 104   (ppp)      mut1 M2-HA     104
# mut1 M2-HA 147   (ppp)      mut1 M2-HA     147

The ppp-hypercolumn of the hyper data frame flu, flu$pattern, is a ppplist (Chapter 24).

Data: a ppplist object, as ppp-hypercolumn, flu$pattern
spatstat.data::flu$pattern |>
  head(n = 3L)
# List of point patterns
# 
# wt M2-M1 13:
# Marked planar point pattern: 471 points
# Multitype, with levels = M2, M1 
# window: rectangle = [0, 3331] x [0, 3331] nm
# 
# wt M2-M1 22:
# Marked planar point pattern: 217 points
# Multitype, with levels = M2, M1 
# window: rectangle = [0, 3331] x [0, 3331] nm
# 
# wt M2-M1 27:
# Marked planar point pattern: 214 points
# Multitype, with levels = M2, M1 
# window: rectangle = [0, 3331] x [0, 3331] nm
spatstat.data::flu$pattern |>
  class()
# [1] "ppplist" "solist"  "anylist" "listof"  "list"
spatstat.data::flu$pattern |>
  sapply(FUN = class) |>
  head(n = 3L)
# wt M2-M1 13 wt M2-M1 22 wt M2-M1 27 
#       "ppp"       "ppp"       "ppp"

Many examples in the Appendix use a subset of flu.

Data: fluM, a subset of flu
fluM = spatstat.data::flu |>
  spatstat.geom::subset.hyperframe(subset = (stain == 'M2-M1') & (virustype == 'wt'))
fluM
# Hyperframe:
#             pattern virustype stain frameid
# wt M2-M1 13   (ppp)        wt M2-M1      13
# wt M2-M1 22   (ppp)        wt M2-M1      22
# wt M2-M1 27   (ppp)        wt M2-M1      27
# wt M2-M1 43   (ppp)        wt M2-M1      43
# wt M2-M1 49   (ppp)        wt M2-M1      49
# wt M2-M1 65   (ppp)        wt M2-M1      65
# wt M2-M1 71   (ppp)        wt M2-M1      71
# wt M2-M1 84   (ppp)        wt M2-M1      84

8.11 gorillas

The ppp.object (Chapter 23) gorillas from package spatstat.data (v3.1.9) has

  • 647 points;
  • polygonal window;
  • two multitype-marks, group (with two levels 'major' and 'minor') and season (with two levels 'dry' and 'rainy');
  • 'dataframe'-markformat.
Data: gorillas
spatstat.data::gorillas |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 647 points
# Mark variables: group, season, date 
# window: polygonal boundary
# enclosing rectangle: [580457.9, 585934] x [674172.8, 678739.2] metres
spatstat.data::gorillas |>
  spatstat.geom::markformat.ppp()
# [1] "dataframe"
spatstat.data::gorillas |>
  spatstat.geom::marks.ppp() |>
  head(n = 3L)
#   group season       date
# 1 major    dry 2006-01-06
# 2 major    dry 2006-01-10
# 3 major    dry 2006-01-15

8.12 gorillas.extra

Data set gorillas.extra from package spatstat.data (v3.1.9) is an imlist (Chapter 20).

Data: gorillas.extra
spatstat.data::gorillas.extra |>
  class()
# [1] "imlist"  "solist"  "anylist" "listof"  "list"
spatstat.data::gorillas.extra |>
  sapply(FUN = class)
#     aspect  elevation       heat slopeangle  slopetype vegetation  waterdist 
#       "im"       "im"       "im"       "im"       "im"       "im"       "im"
if (FALSE) {
  spatstat.data::gorillas.extra$aspect |> 
    spatstat.geom::plot.im()
} # figure suppressed to reduce vignette file size

8.13 Kovesi

Data set Kovesi from package spatstat.data (v3.1.9) is a hyperframe (Chapter 17).

Data: Kovesi
spatstat.data::Kovesi |>
  spatstat.geom::dim.hyperframe()
# [1] 41 13
spatstat.data::Kovesi |>
  spatstat.geom::head.hyperframe(n = 3L) |> 
  spatstat.geom::print.hyperframe()
# Hyperframe:
#   linear diverging rainbow cyclic isoluminant ternary colsig l1 l2 chro   n cycsh      values
# 1  FALSE     FALSE   FALSE   TRUE       FALSE   FALSE      j 15 85    0 256     0 (character)
# 2  FALSE     FALSE   FALSE   TRUE       FALSE   FALSE      j 15 85    0 256    25 (character)
# 3  FALSE     FALSE   FALSE   TRUE       FALSE   FALSE  mrybm 35 75   68 256     0 (character)

8.14 longleaf

The ppp.object (Chapter 23) longleaf from package spatstat.data (v3.1.9) has

  • 584 points;
  • rectangle window;
  • one numeric-mark
  • 'vector'-markformat.
Data: longleaf
spatstat.data::longleaf |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 584 points
# marks are numeric, of storage type  'double'
# window: rectangle = [0, 200] x [0, 200] metres
spatstat.data::longleaf |> 
  spatstat.geom::markformat.ppp()
# [1] "vector"
spatstat.data::longleaf |> 
  spatstat.geom::marks.ppp() |>
  summary.default()
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#    2.00    9.10   26.15   26.84   42.12   75.90

8.15 nbfires

The ppp.object (Chapter 23) nbfires from package spatstat.data (v3.1.9) has

  • 7108 points;
  • polygonal window;
  • two multitype-marks fire.type and cause;
  • one numeric-mark fnl.size;
  • 'dataframe'-markformat.
Data: nbfires
spatstat.data::nbfires |>
  spatstat.geom::print.ppp()
# Warning: some mark values are NA in the point pattern x
# Marked planar point pattern: 7108 points
# Mark variables: year, fire.type, dis.date, dis.julian, out.date, out.julian, cause, ign.src, fnl.size 
# window: polygonal boundary
# enclosing rectangle: [0, 1000] x [0, 958.9142] units (one unit = 0.403716 km)
spatstat.data::nbfires |>
  spatstat.geom::markformat.ppp()
# [1] "dataframe"
spatstat.data::nbfires |>
  spatstat.geom::marks.ppp() |>
  head(n = 3L)
#   year fire.type            dis.date dis.julian            out.date out.julian cause      ign.src fnl.size
# 1 2000    forest 2000-05-04 19:15:00   124.7604 2000-05-05 12:00:00   125.4583 resid  burn.w.perm      1.6
# 2 2000    forest 2000-04-18 14:00:00   108.5417 2000-04-18 19:00:00   108.7500  misc         cigs      7.0
# 3 2000     grass 2000-05-03 16:30:00   123.6458 2000-05-03 18:00:00   123.7083 resid burn.no.perm      1.0

8.16 osteo

The hyperframe (Chapter 17) osteo from package spatstat.data (v3.1.9) has

  • the serial number of sampling volume brick nested in the bone sample id
Data: osteo
spatstat.data::osteo |>
  spatstat.geom::dim.hyperframe()
# [1] 40  5
spatstat.data::osteo |> 
  spatstat.geom::head.hyperframe(n = 6L) |> 
  spatstat.geom::print.hyperframe()
# Hyperframe:
#       id shortid brick   pts depth
# 1 c77za4       4     1 (pp3)    45
# 2 c77za4       4     2 (pp3)    60
# 3 c77za4       4     3 (pp3)    55
# 4 c77za4       4     4 (pp3)    60
# 5 c77za4       4     5 (pp3)    85
# 6 c77za4       4     6 (pp3)    90

8.17 spruces

The ppp.object (Chapter 23) spruces from package spatstat.data (v3.1.9) has

  • 134 points;
  • rectangle window;
  • one numeric-mark
  • 'vector'-markformat.
Data: spruces
spatstat.data::spruces |>
  spatstat.geom::print.ppp()
# Marked planar point pattern: 134 points
# marks are numeric, of storage type  'double'
# window: rectangle = [0, 56] x [0, 38] metres
spatstat.data::spruces |> 
  spatstat.geom::markformat.ppp()
# [1] "vector"
spatstat.data::spruces |> 
  spatstat.geom::marks.ppp() |>
  summary.default()
#    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
#  0.1600  0.2200  0.2450  0.2504  0.2700  0.3700

8.18 swedishpines

The ppp.object (Chapter 23) swedishpines from package spatstat.data (v3.1.9) has

  • the \(x\)- and \(y\)-coordinates of 71 points-only;
  • rectangle window;
  • no marks, i.e., 'none'-markformat.
Data: swedishpines
spatstat.data::swedishpines |>
  spatstat.geom::print.ppp()
# Planar point pattern: 71 points
# window: rectangle = [0, 96] x [0, 100] units (one unit = 0.1 metres)
spatstat.data::swedishpines |>
  spatstat.geom::markformat.ppp()
# [1] "none"
spatstat.data::swedishpines |>
  spatstat.geom::marks.ppp() |>
  is.null()
# [1] TRUE

8.19 vesicles

The ppp.object (Chapter 23) vesicles from package spatstat.data (v3.1.9) has

  • the \(x\)- and \(y\)-coordinates of 37 points-only;
  • polygonal window;
  • no marks, i.e., 'none'-markformat.
Data: vesicles
spatstat.data::vesicles |>
  spatstat.geom::print.ppp()
# Planar point pattern: 37 points
# window: polygonal boundary
# enclosing rectangle: [22.6796, 586.2292] x [11.9756, 1030.7] nm
spatstat.data::vesicles |>
  spatstat.geom::markformat.ppp()
# [1] "none"
spatstat.data::vesicles |>
  spatstat.geom::marks.ppp() |>
  is.null()
# [1] TRUE

8.20 vesicles.extra

Data set vesicles.extra from package spatstat.data (v3.1.9) is a length-4 spatial object list (solist (Chapter 25)).

Data: vesicles.extra
spatstat.data::vesicles.extra
# List of spatial objects
# 
# activezone:
# planar line segment pattern: 9 line segments
# window: rectangle = [0, 625] x [0, 1050] nm
# 
# mitochondria:
# window: polygonal boundary
# enclosing rectangle: [90.41389, 315.29187] x [532.1753, 781.4376] nm
# 
# presynapse:
# window: polygonal boundary
# enclosing rectangle: [22.6796, 586.2292] x [11.9756, 1030.7] nm
# 
# mask:
# window: binary image mask
# 420 x 250 pixel array (ny, nx)
# enclosing rectangle: [0, 250] x [0, 420] units
spatstat.data::vesicles.extra |>
  class()
# [1] "solist"  "anylist" "listof"  "list"
spatstat.data::vesicles.extra |>
  lapply(FUN = class)
# $activezone
# [1] "psp"  "list"
# 
# $mitochondria
# [1] "owin"
# 
# $presynapse
# [1] "owin"
# 
# $mask
# [1] "owin"

8.21 waterstriders

Data set waterstriders from package spatstat.data (v3.1.9) is a length-3 ppplist (Chapter 24).

Data: waterstriders
spatstat.data::waterstriders
# List of point patterns
# 
# Component 1:
# Planar point pattern: 38 points
# window: rectangle = [0, 48.1] x [0, 48.1] cm
# 
# Component 2:
# Planar point pattern: 36 points
# window: rectangle = [0, 48.8] x [0, 48.8] cm
# 
# Component 3:
# Planar point pattern: 36 points
# window: rectangle = [0, 46.4] x [0, 46.4] cm
spatstat.data::waterstriders |>
  class()
# [1] "ppplist" "solist"  "anylist" "listof"  "list"
spatstat.data::waterstriders |>
  sapply(FUN = class)
# [1] "ppp" "ppp" "ppp"