library(maxEff)
# Loading required package: groupedHyperframe
# Registered S3 method overwritten by 'pROC':
# method from
# plot.roc spatstat.explore13 add_dummy_ from node1,function
The examples in Chapter 13 require (see the explanation of the function name conflict in Section 7.4)
search path & loadedNamespaces on author’s computer
search()
# [1] ".GlobalEnv" "package:maxEff" "package:groupedHyperframe" "package:stats" "package:graphics" "package:grDevices" "package:utils"
# [8] "package:datasets" "package:methods" "Autoloads" "package:base"
loadedNamespaces() |> sort.int()
# [1] "abind" "base" "caret" "class" "cli" "cluster" "codetools" "compiler" "data.table"
# [10] "datasets" "deldir" "digest" "doParallel" "dplyr" "evaluate" "farver" "fastmap" "fastmatrix"
# [19] "foreach" "future" "future.apply" "generics" "geomtextpath" "GET" "ggplot2" "globals" "glue"
# [28] "goftest" "gower" "graphics" "grDevices" "grid" "gridExtra" "groupedHyperframe" "gtable" "hardhat"
# [37] "htmltools" "htmlwidgets" "ipred" "iterators" "jsonlite" "knitr" "lattice" "lava" "lifecycle"
# [46] "listenv" "lubridate" "magrittr" "MASS" "Matrix" "matrixStats" "maxEff" "methods" "ModelMetrics"
# [55] "nlme" "nnet" "otel" "parallel" "parallelly" "patchwork" "pillar" "pkgconfig" "plyr"
# [64] "polyclip" "pracma" "pROC" "prodlim" "purrr" "R6" "RColorBrewer" "Rcpp" "recipes"
# [73] "reshape2" "rlang" "rmarkdown" "rpart" "rstudioapi" "S7" "scales" "SpatialPack" "spatstat.data"
# [82] "spatstat.explore" "spatstat.geom" "spatstat.random" "spatstat.sparse" "spatstat.univar" "spatstat.utils" "splines" "stats" "stats4"
# [91] "stringi" "stringr" "survival" "systemfonts" "tensor" "textshaping" "tibble" "tidyselect" "timechange"
# [100] "timeDate" "tools" "utils" "vctrs" "viridisLite" "withr" "xfun" "yaml"🚧 Chapter 13 is being re-written English-wise. All code are correct here, though. Expected delivery by 2025-12-31.
The internal class 'add_dummy_' defined in package maxEff v0.2.1 inherits from the class 'node1' (Chapter 32), with additional attributes
attr(., 'p1'), anumericscalar between 0 and 1, theTRUEprobability of the additionallogicalpredictor in the training setattr(., 'effsize'), anumericscalar, the regression coefficients, i.e., effect sizeeffsize, of the additionallogicalpredictorattr(., 'model'), the regression model with additionallogicalpredictor
The S3 method base::print.default() displays each 'add_dummy_' object.
Example: training models b0 in training set s0: 1st element
b0[[1L]]Example: training models b0 in training set s0: 2nd element
b0[[2L]]Example: training models c0 in test-subset of training set s0: 1st element
c0[[1L]]Example: training models c0 in test-subset of training set s0: 2nd element
c0[[2L]]The S3 method predict.node1() evaluates a dichotomizing rule in a hyper data frame. Note that user must call the S3 method predict.node1() explicitly, otherwise the S3 generic stats::predict() would dispatch to predict.add_dummy_().
Example: predict.node1(); 1st selected logical predictor
b0[[1L]] |>
predict.node1(newdata = s0) |>
table() |>
addmargins()
b0[[1L]] |>
predict.node1(newdata = s1) |>
table() |>
addmargins()Example: predict.node1(); 2nd selected logical predictor
b0[[2L]] |>
predict.node1(newdata = s0) |>
table() |>
addmargins()
b0[[2L]] |>
predict.node1(newdata = s1) |>
table() |>
addmargins() Example: predict.node1(); 1st selected logical predictor via repeated partitions
c0[[1L]] |>
predict.node1(newdata = s0) |>
table() |>
addmargins()
c0[[1L]] |>
predict.node1(newdata = s1) |>
table() |>
addmargins()Example: predict.node1(); 2nd selected logical predictor via repeated partitions
c0[[2L]] |>
predict.node1(newdata = s0) |>
table() |>
addmargins()
c0[[2L]] |>
predict.node1(newdata = s1) |>
table() |>
addmargins()The S3 method predict.add_dummy_() is the workhorse of the S3 method predict.add_dummy().
Example: predict.add_dummy_(); predicted models b1: 1st element
b0[[1L]] |>
predict(newdata = s1) |>
identical(y = b1[[1L]]) |>
stopifnot()Example: predict.add_dummy_(); predicted models b1: 2nd element
b0[[2L]] |>
predict(newdata = s1) |>
identical(y = b1[[2L]]) |>
stopifnot()Example: predict.add_dummy_(); predicted models c1: 1st element
c0[[1L]] |>
predict(newdata = s1) |>
identical(y = c1[[1L]]) |>
stopifnot()Example: predict.add_dummy_(); predicted models c1: 2nd element
c0[[2L]] |>
predict(newdata = s1) |>
identical(y = c1[[2L]]) |>
stopifnot()