20  fv

Function spatstat.explore::fv() creates a function-value-table (fv.object), i.e., an R object of S3 class 'fv'.

The S3 generic function spatstat.explore::as.fv() converts R objects of various classes into a function-value-table. Listing 20.1 summarizes the S3 methods for the generic function as.fv() in the spatstat.* family of packages,

Listing 20.1: S3 methods spatstat.*::as.fv.*
Code
suppressPackageStartupMessages(library(spatstat))
.S3methods(generic.function = 'as.fv', all.names = TRUE) |> 
  attr(which = 'info', exact = TRUE) |>
  subset.data.frame(subset = grepl(pattern = '^spatstat\\.', x = from))
#                  visible             from generic  isS4
# as.fv.bw.optim      TRUE spatstat.explore   as.fv FALSE
# as.fv.data.frame    TRUE spatstat.explore   as.fv FALSE
# as.fv.dppm          TRUE   spatstat.model   as.fv FALSE
# as.fv.fasp          TRUE spatstat.explore   as.fv FALSE
# as.fv.fv            TRUE spatstat.explore   as.fv FALSE
# as.fv.kppm          TRUE   spatstat.model   as.fv FALSE
# as.fv.matrix        TRUE spatstat.explore   as.fv FALSE
# as.fv.minconfit     TRUE   spatstat.model   as.fv FALSE

Listing 20.2 summarizes the S3 methods for the class 'fv' in the spatstat.* family of packages,

Listing 20.2: S3 methods spatstat.*::*.fv
Code
suppressPackageStartupMessages(library(spatstat))
.S3methods(class = 'fv', all.names = TRUE) |> 
  attr(which = 'info', exact = TRUE) |>
  subset.data.frame(subset = grepl(pattern = '^spatstat\\.', x = from))
#                  visible             from       generic  isS4
# [.fv                TRUE spatstat.explore             [ FALSE
# [<-.fv              TRUE spatstat.explore           [<- FALSE
# $<-.fv              TRUE spatstat.explore           $<- FALSE
# as.data.frame.fv    TRUE spatstat.explore as.data.frame FALSE
# as.function.fv      TRUE spatstat.explore   as.function FALSE
# as.fv.fv            TRUE spatstat.explore         as.fv FALSE
# cbind.fv            TRUE spatstat.explore         cbind FALSE
# collapse.fv         TRUE spatstat.explore      collapse FALSE
# compatible.fv       TRUE spatstat.explore    compatible FALSE
# Complex.fv          TRUE spatstat.explore       Complex FALSE
# deriv.fv            TRUE spatstat.explore         deriv FALSE
# formula.fv          TRUE spatstat.explore       formula FALSE
# formula<-.fv        TRUE spatstat.explore     formula<- FALSE
# harmonise.fv        TRUE spatstat.explore     harmonise FALSE
# harmonize.fv        TRUE spatstat.explore     harmonize FALSE
# integral.fv         TRUE spatstat.explore      integral FALSE
# Math.fv             TRUE spatstat.explore          Math FALSE
# names<-.fv          TRUE spatstat.explore       names<- FALSE
# Ops.fv              TRUE spatstat.explore           Ops FALSE
# pcf.fv              TRUE spatstat.explore           pcf FALSE
# plot.fv             TRUE spatstat.explore          plot FALSE
# pool.fv             TRUE spatstat.explore          pool FALSE
# print.fv            TRUE spatstat.explore         print FALSE
# rose.fv             TRUE spatstat.explore          rose FALSE
# Smooth.fv           TRUE spatstat.explore        Smooth FALSE
# StieltjesCalc.fv    TRUE spatstat.explore StieltjesCalc FALSE
# Summary.fv          TRUE spatstat.explore       Summary FALSE
# with.fv             TRUE spatstat.explore          with FALSE

The examples in Chapter 20 require

library(groupedHyperframe)
search path & loadedNamespaces on author’s computer
search()
#  [1] ".GlobalEnv"                "package:groupedHyperframe" "package:stats"             "package:graphics"          "package:grDevices"         "package:utils"             "package:datasets"         
#  [8] "package:methods"           "Autoloads"                 "package:base"
loadedNamespaces() |> sort.int()
#  [1] "abind"             "base"              "cli"               "cluster"           "codetools"         "compiler"          "datasets"          "deldir"            "digest"           
# [10] "doParallel"        "dplyr"             "evaluate"          "farver"            "fastmap"           "fastmatrix"        "foreach"           "generics"          "geomtextpath"     
# [19] "GET"               "ggplot2"           "glue"              "goftest"           "graphics"          "grDevices"         "grid"              "gridExtra"         "groupedHyperframe"
# [28] "gtable"            "htmltools"         "htmlwidgets"       "iterators"         "jsonlite"          "knitr"             "lattice"           "lifecycle"         "magrittr"         
# [37] "Matrix"            "matrixStats"       "methods"           "nlme"              "otel"              "parallel"          "patchwork"         "pillar"            "pkgconfig"        
# [46] "polyclip"          "pracma"            "R6"                "RColorBrewer"      "rlang"             "rmarkdown"         "rstudioapi"        "S7"                "scales"           
# [55] "SpatialPack"       "spatstat.data"     "spatstat.explore"  "spatstat.geom"     "spatstat.random"   "spatstat.sparse"   "spatstat.univar"   "spatstat.utils"    "stats"            
# [64] "systemfonts"       "tensor"            "textshaping"       "tibble"            "tidyselect"        "tools"             "utils"             "vctrs"             "viridisLite"      
# [73] "xfun"              "yaml"

Table 20.1 summarizes the S3 methods for the class 'fv' in package groupedHyperframe (v0.3.2.20251225),

Table 20.1: S3 methods groupedHyperframe::*.fv (v0.3.2.20251225)
visible generic isS4
.disrecommend2theo.fv TRUE groupedHyperframe::.disrecommend2theo FALSE
.illegal2theo.fv TRUE groupedHyperframe::.illegal2theo FALSE
.rmax.fv TRUE groupedHyperframe::.rmax FALSE
cumvtrapz.fv TRUE groupedHyperframe::cumvtrapz FALSE
keyval.fv TRUE groupedHyperframe::keyval FALSE
visualize_vtrapz.fv TRUE groupedHyperframe::visualize_vtrapz FALSE

20.1 Example

Listing 20.3 creates a function-value-table spruces_k, which is the mark correlation of the point-pattern spruces (Section 10.19).

Listing 20.3: Data: function-value-table spruces_k
spruces_k = spatstat.data::spruces |> 
  spatstat.explore::markcorr()

The S3 method spatstat.explore::print.fv() (Listing 20.4) prints the vital information of a function-value-table.

Listing 20.4: Review: function print.fv() (Listing 20.3)
spruces_k |>
  spatstat.explore::print.fv()
# Function value object (class 'fv')
# for the function r -> k[mm](r)
# ................................................................................
#       Math.label              Description                                       
# r     r                       distance argument r                               
# theo  {k[mm]^{iid}}(r)        theoretical value (independent marks) for k[mm](r)
# trans {hat(k)[mm]^{trans}}(r) translation-corrected estimate of k[mm](r)        
# iso   {hat(k)[mm]^{iso}}(r)   Ripley isotropic correction estimate of k[mm](r)  
# ................................................................................
# Default plot formula:  .~r
# where "." stands for 'iso', 'trans', 'theo'
# Recommended range of argument r: [0, 9.5]
# Available range of argument r: [0, 9.5]
# Unit of length: 1 metre

The S3 method spatstat.explore::plot.fv() (Listing 20.5) visualizes the recommended function values of spruces_k (Listing 20.3) as a black-solid-curve (Figure 20.1).

Listing 20.5: Review: function plot.fv() (Listing 20.3)
par(mar = c(4, 4, 1, 1))
spruces_k |>
  spatstat.explore::plot.fv(main = NULL)
Figure 20.1: Mark Correlation of spruces (Listing 20.3)

Function spatstat.explore::fvnames() (v3.6.0.5) finds the columns in a function-value-table that are (Table 20.2, Listing 20.6),

Table 20.2: Function fvnames()
Abbreviation Finds
a = '.x' the function argument
a = '.y' the recommended function value
Listing 20.6: Review: function fvnames() (Listing 20.3)
c(
  .x = spruces_k |>
    spatstat.explore::fvnames(a = '.x'),
  .y = spruces_k |>
    spatstat.explore::fvnames(a = '.y')
)
#    .x    .y 
#   "r" "iso"

20.2 Function Value

The S3 generic function keyval() finds various function values (default being the recommended) in a function-value-table, or an R object containing one or more function-value-tables. Package groupedHyperframe (v0.3.2.20251225) implements the following S3 methods (Table 20.3),

Table 20.3: S3 methods of groupedHyperframe::keyval (v0.3.2.20251225)
visible isS4
keyval.fv TRUE FALSE
keyval.fvlist TRUE FALSE
keyval.hyperframe TRUE FALSE

The S3 method keyval.fv() finds various function values (default being the recommended) in a function-value-table, with the corresponding function argument as the vector names.

Listing 20.7 finds the recommended function value in the function-value-table spruces_k (Listing 20.3).

Listing 20.7: Example: function keyval.fv() (Listing 20.3)
spruces_k_iso = spruces_k |>
  keyval()
spruces_k_iso
#            0 0.0185546875  0.037109375 0.0556640625   0.07421875 0.0927734375  0.111328125 0.1298828125    0.1484375 0.1669921875  0.185546875 0.2041015625   0.22265625 0.2412109375  0.259765625 
#    0.8091085    0.8109143    0.8128058    0.8147079    0.8166921    0.8186921    0.8207701    0.8228690    0.8250411    0.8272393    0.8295051    0.8318018    0.8341601    0.8365537    0.8390019 
# ✂️ --- output truncated --- ✂️

Listing 20.8 finds the theoretical function value in the function-value-table spruces_k (Listing 20.3).

Listing 20.8: Example: function keyval.fv(., key = 'theo') (Listing 20.3)
spruces_k_theo = spruces_k |>
  keyval(key = 'theo')
spruces_k_theo
#            0 0.0185546875  0.037109375 0.0556640625   0.07421875 0.0927734375  0.111328125 0.1298828125    0.1484375 0.1669921875  0.185546875 0.2041015625   0.22265625 0.2412109375  0.259765625 
#            1            1            1            1            1            1            1            1            1            1            1            1            1            1            1 
# ✂️ --- output truncated --- ✂️

The S3 method spatstat.explore::with.fv() (v3.6.0.5) is capable of creating identical returns as the S3 method keyval.fv() (Listing 20.9, Listing 20.10). Table 20.4 explains the differences and connections of these two functions.

Listing 20.9: Review: function with.fv(), identical to Listing 20.7
spruces_k |>
  spatstat.explore::with.fv(expr = setNames(iso, nm = r)) |>
  identical(y = spruces_k_iso) |> 
  stopifnot()
Listing 20.10: Review: function with.fv(), identical to Listing 20.8
spruces_k |>
  spatstat.explore::with.fv(expr = setNames(theo, nm = r)) |>
  identical(y = spruces_k_theo) |> 
  stopifnot()
Table 20.4: Functions keyval.fv() versus with.fv()
keyval.fv() with.fv()
Functionality only finds key values much more flexible
Speed fast slow
S3 OO used in keyval.fvlist() (Section 21.4), keyval.hyperframe() (Section 26.14); with similar user-interface Not extendable to fvlist (Chapter 21) and hyperframe (Chapter 26)

20.3 Cumulative Average Vertical Height of Trapzoidal Integration

The S3 method cumvtrapz.fv() (Section 11.1, Table 11.1) calculates the cumulative average vertical height of the trapezoidal integration (Section 11.1) under the recommended function values.

The S3 method visualize_vtrapz.fv() (Section 11.2, Table 11.2) visualizes the cumulative average vertical height of the trapezoidal integration (Section 11.1) under the recommended function values

Listing 20.11, Figure 20.2.

Listing 20.11: Figure: Visualize cumvtrapz of markcorr() (Listing 20.3)
spruces_k |>
  visualize_vtrapz(draw.rect = FALSE) + 
  ggplot2::theme_minimal()
Figure 20.2: cumvtrapz of markcorr() (Listing 20.3)

20.4 \(r_\text{max}\)

The S3 method .rmax.fv() (Section 36.10, Table 36.11), often used as an internal utility function, simply grabs the maximum value of the \(r\)-vector in a function-value-table.

Listing 20.12 finds the maximum value of the \(r\)-vector in the function-value-table spruces_k (Listing 20.3). Listing 20.13 creates an identical return as Listing 20.12 using the S3 method spatstat.explore::with.fv() (v3.6.0.5).

Listing 20.12: Example: function .rmax.fv() (Listing 20.3)
sprucesK_r = spruces_k |>
  .rmax.fv()
sprucesK_r
# [1] 9.5
Listing 20.13: Review: function with.fv(), identical to Listing 20.12
spruces_k |>
  spatstat.explore::with.fv(expr = max(r)) |>
  identical(y = sprucesK_r) |> 
  stopifnot()

20.5 Legal \(r_\text{max}\)

Function spatstat.explore::markcorr() is the workhorse inside the functions Emark(), Vmark() and markvario() (v3.6.0.5). Function markcorr() provides a default argument of parameter \(r\)-vector (Section 36.10), at which the mark correlation function \(k_f(r)\) are evaluated. Function markcorr() relies on the un-exported workhorse function spatstat.explore:::sewsmod(), whose default method = "density" contains a ratio of two kernel density estimates. Exceptional/illegal values of 0, Inf and/or NaN (Chapter 44, Listing 44.1) may appear in the return of function markcorr(), if the \(r\)-vector goes well beyond the recommended range (Listing 20.4).

Listing 20.14 constructs a malformed function-value-table fv_mal (Figure 20.3).

Listing 20.14: Data: a malformed function-value-table fv_mal with \(r\)-vector out-of-range
fv_mal = spatstat.data::spruces |> 
  spatstat.explore::markcorr(r = 0:100)
Listing 20.15: Review: plot.fv() on fv_mal (Listing 20.14)
Code
par(mar = c(4, 4, 1, 1))
fv_mal |> 
  spatstat.explore::plot.fv(xlim = c(0, 100), main = NULL)
Figure 20.3: A malformed function-value-table fv_mal (Listing 20.14)

The term Legal \(r_\text{max}\) indicates (the index) of the \(r\)-vector, where the last of the consecutive legal (Chapter 44, Listing 44.5) recommended function values appears. Listing 20.16 shows that the last consecutive legal recommended-function-value of the malformed function-value-table fv_mal (Listing 20.14) of \(k_f(r)=1.550\) appears at the 75-th index of the \(r\)-vector, i.e., \(r=74\).

Listing 20.16: Example: lastLegal() of keyval.fv() (Listing 20.14)
spruces_k_lastLegal = fv_mal |>
  keyval.fv() |>
  lastLegal()
spruces_k_lastLegal
# [1] 75
# attr(,"value")
#       74 
# 1.549766

Legality of the function markcorr() returns depends not only on the input point-pattern, but also on the values of the \(r\)-vector (Listing 20.17). In other words, the creation of a function-value-table is a numerical procedure. Therefore, the discussion of Legal \(r_\text{max}\) pertains to the function-value-table (fv.object, Chapter 20), instead of to the point-pattern (ppp.object, Chapter 36).

Listing 20.17: Example: Legality of markcorr() return depends on \(r\)-vector
spatstat.data::spruces |> 
  spatstat.explore::markcorr(r = seq.int(from = 0, to = 100, by = .1)) |>
  keyval.fv() |>
  lastLegal()
# [1] 742
# attr(,"value")
#      74.1 
# 0.3191326

20.5.1 Handling Illegal Recommended-Function-Value

The S3 generic functions .illegal2theo() and .disrecommend2theo() are exploratory approaches to remove the illegal recommended function values (Section 20.5) from a function-value-table. These approaches replace the recommended function values with the theoretical values starting at different locations in the function argument (Table 20.2, Listing 20.6), and return an updated function-value-table. Package groupedHyperframe (v0.3.2.20251225) implements the following S3 methods (Table 20.5, Table 20.6),

Table 20.5: S3 methods of groupedHyperframe::.illegal2theo (v0.3.2.20251225)
visible isS4
.illegal2theo.fv TRUE FALSE
.illegal2theo.fvlist TRUE FALSE
.illegal2theo.hyperframe TRUE FALSE
Table 20.6: S3 methods of groupedHyperframe::.disrecommend2theo (v0.3.2.20251225)
visible isS4
.disrecommend2theo.fv TRUE FALSE
.disrecommend2theo.fvlist TRUE FALSE
.disrecommend2theo.hyperframe TRUE FALSE

The S3 method .illegal2theo.fv() (Listing 20.18) replaces the recommended function values after the first illegal \(r\) (Section 20.5) of the malformed function-value-table fv_mal (Listing 20.14) with its theoretical values (Figure 20.4).

Listing 20.18: Advanced: function .illegal2theo.fv() (Listing 20.14)
par(mar = c(4, 4, 1, 1))
fv_mal |> 
  .illegal2theo() |>
  spatstat.explore::plot.fv(xlim = c(0, 100), main = NULL)
# r≥75.0 replaced with theo
Figure 20.4: Replaces with theoretical values after the first illegal \(r\) (Listing 20.14)

The S3 method .disrecommend2theo.fv() (Listing 20.19) replaces the recommended function values outside the recommended range attr(.,'alim')[2L] of the malformed function-value-table fv_mal (Listing 20.14) with its theoretical values (Figure 20.5).

Listing 20.19: Advanced: function .disrecommend2theo.fv() (Listing 20.14)
par(mar = c(4, 4, 1, 1))
fv_mal |> 
  .disrecommend2theo() |>
  spatstat.explore::plot.fv(xlim = c(0, 100), main = NULL)
# r≥10.0 replaced with theo
Figure 20.5: Replaces with theoretical values outside the recommended range (Listing 20.14)

20.6 Interpolation & Smoothing

Section 20.6 illustrates various interpolation and smoothing methods of the \(x\)- and \(y\)-values (Table 20.2, Listing 20.6) in a function-value-table.

Listing 20.20 creates the toy examples of a coarse and a fine function-value-table at a coarse and a fine \(r\)-vector for the mark correlation of the point-pattern spruces (Section 10.19).

Listing 20.20: Data: coarse versus fine fv.object
r = list(
  coarse = 0:9,
  fine = seq.int(from = 0, to = 9, by = .01)
)
sprucesK = r |> 
  lapply(FUN = \(r) {
    spatstat.data::spruces |>
      spatstat.explore::markcorr(r = r)
  })

Function approxfun.fv() (Listing 20.21, Figure 20.6, Left) performs a linear interpolation. This is a “pseudo” S3 method, as the workhorse function stats::approxfun() is not an S3 generic function. This function is mathematically equivalent to the S3 method spatstat.explore::as.function.fv() (v3.6.0.5) (Figure 20.6, Right).

Listing 20.21: Example: function approxfun.fv() (Listing 20.20)
list(
  sprucesK$coarse |> approxfun.fv(),
  sprucesK$coarse |> spatstat.explore::as.function.fv()
) |>
  visualize_vtrapz.listof(draw.rect = FALSE) &
  ggplot2::theme_minimal()
Figure 20.6: Linear Interpolation approxfun.fv() versus as.function.fv() (Listing 20.20)

Function splinefun.fv() (Listing 20.22) performs a spline interpolation (Figure 20.7). This is a “pseudo” S3 method, as the workhorse function stats::splinefun() is not an S3 generic function.

Listing 20.22: Example: function splinefun.fv() (Listing 20.20)
sprucesK$coarse |>
  splinefun.fv() |>
  visualize_vtrapz(draw.rect = FALSE) +
  ggplot2::theme_minimal()
Figure 20.7: Spline Interpolation splinefun.fv() (Listing 20.20)

Function loess.fv() (Listing 20.23) performs a local polynomial regression fit (Figure 20.8). This is a “pseudo” S3 method, as the workhorse function stats::loess() is not an S3 generic function.

Listing 20.23: Example: function loess.fv() (Listing 20.20)
sprucesK$coarse |>
  loess.fv() |>
  visualize_vtrapz(draw.rect = FALSE) +
  ggplot2::theme_minimal()
Figure 20.8: Local Polynomial Regression, or LOESS, loess.fv() (Listing 20.20)

An experienced reader may wonder: is it truly advantageous to compute a coarse function-value-table and then perform interpolation and/or smoothing, rather than computing a fine function-value-table to start with? This is an excellent question! In fact, we observe no substantial difference in computation time via package microbenchmark (Mersmann 2024, v1.5.0) even when the grid of the \(r\)-vector is 100 times finer (Listing 20.24), as of package spatstat.explore (v3.6.0.5)! This observation justifies the use of the plain-and-naïve trapezoidal integration (Chapter 11, Section 11.1) on a fine fv.object (Figure 20.9, Right), rather than employing more sophisticated numerical integration methods, e.g., the Simpson’s rule pracma::simpson(), the adaptive Simpson quadrature pracma::quad(), etc. on an interpolation and/or smoothing of a coarse fv.object (Figure 20.6, Figure 20.7, Figure 20.8).

Listing 20.24: Advanced: coarse versus fine function-value-table, benchmarks (Listing 20.20)
suppressPackageStartupMessages(library(spatstat))
microbenchmark::microbenchmark(
  coarse = Emark(spruces, r = r$coarse),
  fine = Emark(spruces, r = r$fine)
) |>
  suppressWarnings()
# Unit: milliseconds
#    expr      min       lq     mean   median       uq      max neval cld
#  coarse 2.015478 2.049241 2.279279 2.080156 2.144177 7.284921   100  a 
#    fine 2.365003 2.412953 2.599631 2.481689 2.524596 5.644839   100   b
Listing 20.25: Figure: coarse versus fine function-value-table, trapezoidal integration (Listing 20.20)
sprucesK |>
  visualize_vtrapz.listof(draw.rect = FALSE) & 
  ggplot2::theme_minimal()
Figure 20.9: coarse versus fine function-value-table, trapezoidal integration (Listing 20.20)