library(groupedHyperframe.random)
# Loading required package: groupedHyperframe49 .rppp()
The examples in Chapter 49 require
Function groupedHyperframe.random::.rppp() (v0.2.0.20251221) implements the vectorized parameterization using advanced R language operations.
Listing 49.1 shows that the code snippet inside function .rppp() (Listing 4.1) cannot be taken outside function .rppp()!
language operation
tryCatch(expr = {
spatstat.random::rMatClust(kappa = c(10, 5), mu = c(8, 4), scale = c(.15, .06))
}, error = identity)
# <simpleError: 'scale' should be a single number>Listing 49.2 shows that the native pipe operator |> successfully passes the code snippet into function .rppp().
language operation via native pipe |>
set.seed(12); r = rMatClust(kappa = c(10, 5), mu = c(8, 4), scale = c(.15, .06)) |>
.rppp()
# Point-pattern simulated by `spatstat.random::rMatClust()`
# Listing 49.3 shows that the pipe operator magrittr::`%>%` (Bache and Wickham 2025, v2.0.4) does not pass the code snippet into function .rppp()!
language operation via magrittr::`%>%`
suppressPackageStartupMessages(library(magrittr))
tryCatch(expr = {
rMatClust(kappa = c(10, 5), mu = c(8, 4), scale = c(.15, .06)) %>%
.rppp()
}, error = identity)
# <notSubsettableError in i[[1L]]: object of type 'symbol' is not subsettable>