2  Grouped Hyper Data Frame

The examples in Chapter 2 require that the search path contains the following namespaces,

library(groupedHyperframe)
library(survival)
search path on author’s computer running RStudio (Posit Team 2025)
search()
#  [1] ".GlobalEnv"                "package:survival"          "package:groupedHyperframe" "package:stats"            
#  [5] "package:graphics"          "package:grDevices"         "package:utils"             "package:datasets"         
#  [9] "package:methods"           "Autoloads"                 "package:base"

A hyper data frame (hyperframe, Chapter 17, package spatstat.geom, v3.6.0.3) contains columns that are either atomic vectors, as in a standard data frame, or lists of objects of the same class—referred to as hypercolumns. This data structure is particularly well suited for spatial analysis contexts, such as medical imaging, where each element in a hypercolumn can represent the spatial information contained in a single image. For example, the dataset demohyper (Section 8.8) from package spatstat.data (v3.1.9) contains a regular column Group, a point-pattern (ppp) hypercolumn Points, and a pixel image (im) hypercolumn Image.

spatstat.data::demohyper
# Hyperframe:
#   Points Image Group
# 1  (ppp)  (im)     a
# 2  (ppp)  (im)     b
# 3  (ppp)  (im)     a

Package groupedHyperframe (v0.3.0.20251020) introduces the grouped hyper data frame, a hyper data frame augmented with a (nested) grouping structure (Chapter 16).

The authors provide a toy dataset wrobel_lung, originally contributed by Dr. Julia Wrobel. Consider a subset lung0, in which the non-identical column(s) within the lowest-level group image_id (under the nested grouping structure ~patient_id/image_id) are hladr and phenotype.

Listing 2.1: Data frame lung0
lung0 = wrobel_lung |>
  within.data.frame(expr = {
    x = y = NULL
    dapi = NULL
  })
lung0 |> 
  head(n = 7L)
#            image_id    patient_id gender hladr phenotype    OS age
# 1 [40864,18015].im3 #01 0-889-121      F 0.115  CK-.CD8- 3488+  85
# 2 [40864,18015].im3 #01 0-889-121      F 0.239  CK-.CD8- 3488+  85
# 3 [40864,18015].im3 #01 0-889-121      F 0.268  CK-.CD8- 3488+  85
# 4 [40864,18015].im3 #01 0-889-121      F 0.245  CK-.CD8- 3488+  85
# 5 [40864,18015].im3 #01 0-889-121      F 0.127  CK+.CD8- 3488+  85
# 6 [40864,18015].im3 #01 0-889-121      F 0.136  CK+.CD8- 3488+  85
# 7 [40864,18015].im3 #01 0-889-121      F 0.481  CK-.CD8+ 3488+  85

A grouped hyper data frame lung_g is created from the data frame lung0 by specifying a (nested) grouping structure (Section 12.1),

Listing 2.2: Grouped hyper data frame lung_g
lung_g = lung0 |> 
  as.groupedHyperframe(group = ~ patient_id/image_id)
lung_g
# Grouped Hyperframe: ~patient_id/image_id
# 
# 15 image_id nested in
# 3 patient_id
# 
# Preview of first 10 (or less) rows:
# 
#        hladr phenotype          image_id    patient_id gender    OS age
# 1  (numeric)  (factor) [40864,18015].im3 #01 0-889-121      F 3488+  85
# 2  (numeric)  (factor) [42689,19214].im3 #01 0-889-121      F 3488+  85
# 3  (numeric)  (factor) [42806,16718].im3 #01 0-889-121      F 3488+  85
# 4  (numeric)  (factor) [44311,17766].im3 #01 0-889-121      F 3488+  85
# 5  (numeric)  (factor) [45366,16647].im3 #01 0-889-121      F 3488+  85
# 6  (numeric)  (factor) [56576,16907].im3 #02 1-037-393      M  1605  66
# 7  (numeric)  (factor) [56583,15235].im3 #02 1-037-393      M  1605  66
# 8  (numeric)  (factor) [57130,16082].im3 #02 1-037-393      M  1605  66
# 9  (numeric)  (factor) [57396,17896].im3 #02 1-037-393      M  1605  66
# 10 (numeric)  (factor) [57403,16934].im3 #02 1-037-393      M  1605  66

The pipeline . |> quantile() |> aggregate() (Section 3.3.2, Section 3.4) computes and aggregates the quantiles of each element in the numeric-hypercolumn lung_g$hladr at the biologically independent grouping level patient_id.

lung_g |>
  quantile(probs = seq.int(from = .01, to = .99, by = .01)) |>
  aggregate(by = ~ patient_id)
# Hyperframe:
#      patient_id gender    OS age hladr.quantile
# 1 #01 0-889-121      F 3488+  85      (numeric)
# 2 #02 1-037-393      M  1605  66      (numeric)
# 3 #03 2-080-378      M   176  84      (numeric)